The Synthesis of 17β -Hydroxy-4,4-dimethyl-19-nor- 5α - and 17β -Hydroxy-4,4-dimethyl-19-nor- 5β -androstan-3-one

By J. M. MIDGLEY, W. B. WHALLEY, and (in part) G. F. KATEKAR, and B. A. LODGE (The School of Pharmacy, The University, London)

 17β -Hydroxy-4,4-dimethyl-19-nor-5 α -androstan-3-one (I) is important in connection with certain conformational problems. A substance assumed to have structure (I) has previously been available only by the catalytic hydrogenation of 17β -hydroxy-4,4-dimethyl-19-norandrost-5(6)en-3-one (III; R = H), although neither its stereochemical homogeneity (at C-5) nor the configuration (at C-5) has been defined with any certainty. We have now resolved these dubieties.

Thus, in our hands, catalytic hydrogenation of the 17β -acetate (III; R=Ac) gave a mixture of 3α -hydroxy- and 3β -hydroxy-17 β -acetoxy-4,4-dimethyl-19-nor-5 α -androstane (IV), together with the corresponding 5β -derivatives (IV). This

mixed product was oxidised to a mixture of 17β -acetoxy-4,4-dimethyl-19-nor-5 α - and -5β -androstan-3-ones and again submitted to catalytic hydrogenation. In contrast to the previous mixed products this was amenable to separation by column chromatography to yield 17β -acetoxy-4,4-dimethyl-19-nor-5 α -androstan-3 ξ -ol and the corresponding 5β -derivative. Oxidation of 17β -acetoxy-4,4-dimethyl-19-nor-5 α -androstan-3 ξ -ol with Jones' reagent followed by de-acetylation of the resultant ketone gave 17β -hydroxy-4,4-di-methyl-19-nor-5 α -androstan-3-one (I), m.p. 162-163°, $[\phi]_{500}$ — 110°, $[\phi]_{400}$ — 200°, $[\phi]_{313}$ — 1050°, $[\phi]_{270}$ + 670°, $[\phi]_{285}$ ca. + 500—600°,* $[\phi]_{217}$ — 310°; a — 17. Bowers and Ringold³ record m.p.

- * Since this point lies on a very steep portion of the curve, it cannot be defined with a high degree of accuracy.
- ¹ N. L. Allinger and M. A. DaRooge, J. Amer. Chem. Soc., 1962, 84, 4561.
- ² C. Djerassi, O. Halpern, V. Halpern and B. Riniker, J. Amer. Chem. Soc., 1958, 80, 4001.

³ A. Bowers and H. J. Ringold, J. Amer. Chem. Soc., 1959, 81, 424.

150—152°. Djerassi *et al.*² record: $[\phi]_{700} - 76^{\circ}$, $[\phi]_{589} - 79^{\circ}$, $[\phi]_{310} - 974^{\circ}$, $[\phi]_{272\cdot5} + 1070^{\circ}$, $[\phi]_{285} + 790^{\circ}$; a - 20. 17β -Acetoxy-4,4-dimethyl-19-nor-5 β -androstan-3 ξ -ol was similarly converted into 17β -hydroxy-4,4-dimethyl-19-nor-5 β -androstan-3-one (II), m.p. 124— 125° , $[\phi]_{400} - 60^{\circ}$,

graphy of the 17β -acetates to yield (V; R = R' = Me, R" = Ac), m.p. 187° , $[\alpha]_{\rm p} + 120^{\circ}$, and (V; R' = H, R = Me, R" = Ac), m.p. 207— 209° , $[\alpha]_{\rm p} + 198^{\circ}$. Desulphurisation of (V; R = R' = Me, R" = Ac) with Raney nickel followed by oxidation of the product with Jones' reagent and

$$(II)$$

$$(II)$$

$$(III)$$

$$(III)$$

$$(III)$$

$$(IV)$$

$$(IV)$$

$$(IV)$$

$$(V)$$

 $\begin{array}{lll} [\phi]_{309}-1065^{\circ}, & [\phi]_{268}+1480^{\circ}, & [\phi]_{265}+1480^{\circ}, \\ [\phi]_{242}+1180^{\circ}, & [\phi]_{208}+1780^{\circ}; & a=25. \end{array}$

Inspection of the o.r.d. data, including the molecular amplitude, for (I) and (II) and those recorded³ for the compound previously regarded¹⁻³ as (I) clearly indicates that the latter material was most probably a mixture of (I) and (II). Physical constants^{1,2} derived from this material must therefore be accepted with reserve.

The 5α -derivative (I) has been unequivocally synthesised. Thus, 17β -hydroxy-19-nor- 5α -androstan-3-one⁴ was converted by way of the 2-hydroxymethylene derivative into the 2-spiro-2'-(1',3'-dithian) (V; R=R'=R''=H). Methylation of this with potassium t-butoxide and methyl iodide gave a mixture of (V; R=R'=Me, R''=H), (V; R'=R'=H, R=Me) and (V; R=R'=R''=Me), from which the 17β -methyl ether was removed by chromatography. The mixed residue was then separated by chromato-

then deacetylation gave 17β -hydroxy-4,4-dimethyl-19-nor-5 α -androstan-3-one (I), identical (including o.r.d.) with the corresponding product from the hydrogenation of (III; R=Ac). Similar results were obtained by methylation of the 17β -tetrahydropyranyl ether (V; R=R'=H, R''= tetrahydropyranyl).

We have also devised a one-step synthesis of (I) from 17β -hydroxy-4-methyl-19-norandrost-4-en-3-one.⁵ This was reduced by the action of lithium in liquid ammonia and the resultant enolate anion treated with methyl iodide to give (I) in high yield. A similar process has recently been described independently for the preparation of 17β -hydroxy-4,4-dimethyl-5 α -androstan-3-one.

 $[\alpha]_D$'s are recorded in chloroform and o.r.d. curves in methanol. All new compounds analysed satisfactorily and had the requisite infrared and n.m.r. spectra.

(Received, March 26th, 1965.)

- ⁴ A. Bowers, H. J. Ringold, and E. Denot, J. Amer. Chem. Soc., 1958, 80, 6115.
- ⁵ N. W. Atwater, J. Amer. Chem. Soc., 1960, 82, 2847.
- ⁶ G. Stork, P. Rosen, N. Goldman, R. V. Coombs, and J. Tsuji, J. Amer. Chem. Soc., 1965, 87, 275.